With this proceedings of the fourth symposium on complex mixtures, we continue to revise and extend our knowledge of genetic methods for the evaluation of chemical mixtures in the environment. The early chapters of this volume are devoted to new bioassay techniques that are directly applicable to the monitoring of environments contaminated with genotoxic chemicals. Microbiological methods have been further refined to meet the special needs of atmospheric monitoring so that very small samples may now be efficiently tested. New in situ methods utilizing green plants actually avoid many of the usual difficulties of sample collection and preparation and offer special advantages in monitoring wastewater, sludges, and hazardous wastes. Insects also are being employed very effectively in the evaluation of gaseous air pollutants in controlled laboratory investigations. Increased emphasis has been placed on a comprehensive assessment of the potential of complex mixtures t9 cause various kinds of genetic damage. New assays for chromosome structural and numerical aberrations in mammalian cells in vitro have been developed and are being applied in laboratory studies. Efforts to link tests for gene mutation and cell transformation in vitro with assays for tumorigenesis in vivo are contributing to the validation of the short-term testing approach. Studies comparing in vitro and in vivo data on a coal conversion by-product, on polycyclic aromatic hydrocarbons, and on mineral fibers are reported in separate papers. Later chapters are devoted to investigations on the fractionation and biological evaluation of specific chemical components within complex mixtures.